Commit 295d6689 authored by David Saxton's avatar David Saxton

Updated documentation:

- Change gui references so that they agree with the current interface.
- Add help for the new function types (Differential, Implicit).
- Updated list of predefined functions.
The documentation still needs more description of the user interface.

svn path=/trunk/KDE/kdeedu/doc/kmplot/; revision=569392
parent 6b228485
......@@ -121,15 +121,6 @@ Displays the <guilabel>Colors</guilabel> Settings dialog box. See
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Scaling...</guimenuitem>
</menuchoice></term>
<listitem><para>Displays the <guilabel>Scale</guilabel> Settings dialog box. See
<xref linkend="scaling-config"/>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Fonts...</guimenuitem>
</menuchoice></term>
......
......@@ -177,32 +177,6 @@ the lines of the grid.</para>
</sect1>
<sect1 id="scaling-config">
<title><guilabel>Scaling</guilabel> Configuration</title>
<screenshot>
<screeninfo>screenshot of the scaling configuration dialog</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="settings-scaling.png" format="PNG"/>
</imageobject>
<textobject>
<phrase>screenshot of the scaling configuration dialog</phrase>
</textobject>
</mediaobject>
</screenshot>
<para>For each axis, you can set the <guilabel>Scaling:</guilabel> and
<guilabel>Printing:</guilabel> of one tic. The <guilabel>Scaling:</guilabel>
option selects how many units apart the axis tics will be (and therefore, how
far apart grid lines will be drawn), and the <guilabel>Printing:</guilabel>
option selects the length of one tic when displayed on the screen or
printed. In this way, these options can be used to change the size of the graph
on screen or on a page: For example, doubling the <guilabel>Printing:</guilabel>
setting whilst keeping the <guilabel>Scaling:</guilabel> setting the same will
result in the graph doubling in in height or width.</para>
</sect1>
<sect1 id="font-config">
<title><guilabel>Fonts</guilabel> Configuration</title>
......
......@@ -19,7 +19,10 @@ Program copyright 2000-2002 Klaus-Dieter M&ouml;ller &Klaus-Dieter.Moeller.mail;
</listitem>
<listitem>
<para>Various improvements: Fredrik Edemar <email>f_edemar@linux.se</email></para>
</listitem>
</listitem>
<listitem>
<para>Porting to Qt 4, UI improvements, features: David Saxton <email>david@bluehaze.org</email></para>
</listitem>
</itemizedlist>
<para>
......@@ -28,6 +31,7 @@ Documentation copyright 2000--2002 by Klaus-Dieter M&ouml;ller &Klaus-Dieter.Moe
<para>Documentation extended and updated for &kde; 3.2 by &Philip.Rodrigues; &Philip.Rodrigues.mail;.</para>
<para>Documentation extended and updated for &kde; 3.3 by &Philip.Rodrigues; &Philip.Rodrigues.mail; and Fredrik Edemar <email>f_edemar@linux.se</email>.</para>
<para>Documentation extended and updated for &kde; 3.4 by Fredrik Edemar <email>f_edemar@linux.se</email>.</para>
<para>Documentation extended and updated for &kde; 4.0 by David Saxton <email>david@bluehaze.org</email>.</para>
<!-- TRANS:CREDIT_FOR_TRANSLATORS -->
&underFDL; <!-- FDL: do not remove. Commercial development should
......
......@@ -2,7 +2,7 @@
<title>Developer's Guide to &kmplot;</title>
<para>If you want to contribute to &kmplot; feel free to send a mail to
&Klaus-Dieter.Moeller.mail; or <email>f_edemar@linux.se</email> </para>
&Klaus-Dieter.Moeller.mail;, <email>f_edemar@linux.se</email> or <email>david@bluehaze.org</email>. </para>
</chapter>
<!--
......
......@@ -2,60 +2,48 @@
<title>First Steps With &kmplot;</title>
<sect1 id="simple-function-plot">
<title>Simple Function Plot</title>
<para>
In the main toolbar there is a simple text box in which you can enter
a function expression. Simply enter:
<screen><userinput>x^2</userinput></screen> and press &Enter;. This
will draw the plot of y=x^2 in the coordinate system. Enter another
expression in the text box like
<screen><userinput>5*sin(x)</userinput></screen> and another plot will
be added.
</para>
<para>Click on one of the lines you have just plotted. Now the cross
hair gets the color of the plot and is attached to the plot. You can
use the mouse to move the cross hair along the plot. In the status
bar at the bottom of the window the coordinates of the current
position is displayed. Note that if the plot touches the x-axis the
root will be displayed in the status bar, too.</para>
<para>Click the mouse again and the cross hair will be detached from
the plot.</para>
<title>Simple Function Plot</title>
<para>
In the sidebar on the left, there is a pushbutton with a drop down menu for creating new plots.
Click on it, and select <guilabel>Cartesian Plot</guilabel>. The text box for editing the current equation will be focused. Replace the default text with:
<screen><userinput>y = x^2</userinput></screen>
and press &Enter;.
This will draw the plot of y = x^2 in the coordinate system.
Clicking on the <guilabel>Create New Plot</guilabel> button again, select <guilabel>Cartesian Plot</guilabel>, and this time enter
<screen><userinput>y = 5sin(x)</userinput></screen>
to get another plot.
</para>
<para>Click on one of the lines you have just plotted. Now the crosshair
gets the color of the plot and is attached to the plot. You can
use the mouse to move the crosshair along the plot. In the status
bar at the bottom of the window the coordinates of the current
position is displayed. Note that if the plot touches the x-axis the
root will be displayed in the status bar, too.</para>
<para>Click the mouse again and the crosshair will be detached from
the plot.</para>
</sect1>
<sect1 id="edit-properties">
<title>Edit Properties</title>
<para>Let us make some changes to the function and change the color of
the plot.</para>
<para>You can edit all functions with the
<menuchoice><guimenu>Plot</guimenu><guimenuitem>Edit
Plots...</guimenuitem> </menuchoice> menu entry. A dialog appears
which lists all the functions that you have plotted. Notice that
&kmplot; has automatically found a unique function name for your
expressions and completed the expression to a function
equation.</para>
<para>Select <guilabel>f(x)=x^2</guilabel> in the list. A double click
or pressing the <guibutton>Edit</guibutton> button will show you a
dialog window. Here you have access to a lot of options. Let us rename
the function and move the plot 5 units down. Change the function
equation to <screen><userinput>parabola(x)=x^2-5</userinput></screen>
</para>
<para>To select another color for the plot click into the
<guilabel>Color:</guilabel> box. Finally press
<guibutton>OK</guibutton> and your changes take effect in the
coordinate system.</para>
<note><para>All changes can be undone until you press
<guibutton>OK</guibutton> in the <guilabel>Edit Plots</guilabel>
dialog.</para>
</note>
<title>Edit Properties</title>
<para>Let us make some changes to the function and change the color of
the plot.</para>
<para>The Function Editor lists all the functions that you have plotted.
If <guilabel>y = x^2</guilabel> isn't already selected, select it.
Here you have access to a lot of options. Let us rename
the function and move the plot 5 units down. Change the function
equation to <screen><userinput>parabola(x) = x^2 - 5</userinput></screen>
</para>
<para>To select another color for the plot, click the <guilabel>Appearance</guilabel> button at the bottom of the function editor and select a new color.
<note>
<para>All changes can be undone via <menuchoice><guimenu>Edit</guimenu><guimenuitem>Undo</guimenuitem> </menuchoice>.</para>
</note>
</para>
</sect1>
</chapter>
<!--
......
......@@ -33,6 +33,10 @@
<author>
&Philip.Rodrigues; &Philip.Rodrigues.mail;
</author>
<author>
<firstname>David</firstname>
<surname>Saxton</surname>
</author>
<!-- TRANS:ROLES_OF_TRANSLATORS -->
</authorgroup>
......@@ -46,6 +50,11 @@
<holder>&Philip.Rodrigues; &Philip.Rodrigues.mail;</holder>
</copyright>
<copyright>
<year>2006</year>
<holder>David Saxton</holder>
</copyright>
<legalnotice>&FDLNotice;</legalnotice>
<date>2006-02-24</date>
......@@ -65,7 +74,7 @@ url="http://edu.kde.org/">http://edu.kde.org/</ulink></para></abstract>
<keywordset>
<keyword>KDE</keyword>
<keyword>KMPlot</keyword>
<keyword>KmPlot</keyword>
<keyword>EDU</keyword>
<keyword>edutainment</keyword>
<keyword>plotting</keyword>
......
<chapter id="introduction">
<title>Introduction</title>
<para>&kmplot; is a mathematical function plotter for the &kde;
Desktop. It has a powerful built-in parser. You can plot different
functions simultaneously and combine them to build new
functions.</para>
Desktop. It has a powerful built-in parser. You can plot different
functions simultaneously and combine them to build new
functions.</para>
<screenshot>
<screeninfo>Examples</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="threeplots.png" format="PNG"/>
</imageobject>
<textobject>
<phrase>Examples</phrase>
</textobject>
</mediaobject>
<screeninfo>Examples</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="threeplots.png" format="PNG"/>
</imageobject>
<textobject>
<phrase>Examples</phrase>
</textobject>
</mediaobject>
</screenshot>
<para>&kmplot; supports parametric functions and functions in
polar coordinates. Several grid modes are supported. Plots may be
printed with high precision in the correct scale.</para>
<para>&kmplot; supports several different types of plots:</para>
<itemizedlist>
<listitem><para>Explicit cartesians plots of the form y = f(x).</para></listitem>
<listitem><para>Parametric plots, where the x and y components are specified as functions of an independent variable.</para></listitem>
<listitem><para>Polar plots of the the form r = r(&thgr;).</para></listitem>
<listitem><para>Implicit plots, where the x and y coordinates are related by an expression.</para></listitem>
<listitem><para>Explicit differential plots.</para></listitem>
</itemizedlist>
<para>&kmplot; also provides some numerical and visual features like:</para>
<itemizedlist>
<listitem><para>Filling and calculating
the area between the plot and the first axis</para>
</listitem>
<listitem><para>Finding maximum and
minimum values</para>
</listitem>
<listitem><para>Changing function parameters dynamically</para>
</listitem>
<listitem><para>Plotting
derivatives and integral functions.</para>
</listitem>
<listitem><para>Filling and calculating
the area between the plot and the first axis</para>
</listitem>
<listitem><para>Finding maximum and
minimum values</para>
</listitem>
<listitem><para>Changing function parameters dynamically</para>
</listitem>
<listitem><para>Plotting
derivatives and integral functions.</para>
</listitem>
</itemizedlist>
<para>These features help in learning the
relationship between mathematical functions and their graphical
representation in a coordinate system.</para>
relationship between mathematical functions and their graphical
representation in a coordinate system.</para>
</chapter>
......
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment