Commit 6e2201d9 authored by Burkhard Lück's avatar Burkhard Lück

updated docs, reference + dcop/dbus not yet finished

svn path=/trunk/KDE/kdeedu/doc/kmplot/; revision=776850
parent 35dedfc5
......@@ -35,7 +35,7 @@
<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu>
<guimenuitem>Open Recent</guimenuitem>
<guisubmenu>Open Recent</guisubmenu>
</menuchoice></term>
<listitem><para><action>Displays a list of recently opened files.</action>
Selecting one from this list plots the functions in the file.</para></listitem>
......@@ -80,9 +80,7 @@
<menuchoice>
<guimenu>File</guimenu>
<guimenuitem>Export...</guimenuitem></menuchoice></term>
<listitem><para><action>Export values to a textfile.
</action>Every value in the parameter list will be
written to one line in the file.</para></listitem>
<listitem><para><action>Exports</action> the plotted graphs to an image file.</para></listitem>
</varlistentry>
<varlistentry>
......@@ -103,26 +101,26 @@
<variablelist>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Undo</guimenuitem>
<term><menuchoice>
<shortcut>
<keycombo action="simul">&Ctrl;<keycap>Z</keycap></keycombo>
</shortcut>
<guimenu>Edit</guimenu><guimenuitem>Undo</guimenuitem>
</menuchoice></term>
<listitem><para>Undo the last command.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Redo</guimenuitem>
<term><menuchoice>
<shortcut>
<keycombo action="simul">&Ctrl;&Shift;<keycap>Z</keycap></keycombo>
</shortcut>
<guimenu>Edit</guimenu><guimenuitem>Redo</guimenuitem>
</menuchoice></term>
<listitem><para>Redo the last command that was undone.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Coordinate System...</guimenuitem>
</menuchoice></term>
<listitem><para>Displays the <guilabel>Coordinate System</guilabel> dialog box. See <xref linkend="coords-config"/>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Constants...</guimenuitem>
</menuchoice></term>
......@@ -170,7 +168,7 @@
<varlistentry>
<term>
<menuchoice>
<guimenu>Zoom</guimenu>
<guimenu>View</guimenu>
<guimenuitem>Fit Widget to Trigonometric Functions</guimenuitem>
</menuchoice>
</term>
......@@ -178,37 +176,30 @@
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Settings</guimenu>
<guimenuitem>Show Sliders</guimenuitem>
</menuchoice></term>
<listitem>
<para><action>Toggles</action> the visibility of the slider dialog.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Coordinate System I</guimenuitem>
<term><menuchoice><guimenu>View</guimenu><guimenuitem>Reset View</guimenuitem>
</menuchoice></term>
<listitem><para>Show both positive and negative x- and y-values on the grid.
<listitem><para>Resets the view.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Coordinate System II</guimenuitem>
<term><menuchoice><guimenu>View</guimenu><guimenuitem>Coordinate System...</guimenuitem>
</menuchoice></term>
<listitem><para>Show positive and negative y-values, but positive x-values only
<listitem><para>Displays the <guilabel>Coordinate System</guilabel> dialog box. See <xref linkend="coords-config"/>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Coordinate System III</guimenuitem>
<term><menuchoice><guimenu>View</guimenu>
<guimenuitem>Show Sliders</guimenuitem>
</menuchoice></term>
<listitem><para>Show only positive x- and y-values.
</para>
<listitem>
<para><action>Toggles</action> the visibility of the slider dialog.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
......@@ -221,39 +212,39 @@
<varlistentry>
<term><menuchoice><guimenu>Tools</guimenu>
<guimenuitem>Get y-Value...</guimenuitem>
<guimenuitem>Calculator</guimenuitem>
</menuchoice></term>
<listitem>
<para>Let the user get the y-value from a specific x-value. Type a value or expression in the text box under "X:". In the list below all the available functions are shown. Press Enter to calculate the function's y-value. The result will be shown in the y-value box.</para>
<para>Opens the <guilabel>Calculator</guilabel> dialog.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Tools</guimenu>
<guimenuitem>Search for Minimum Value...</guimenuitem>
<guimenuitem>Plot Area...</guimenuitem>
</menuchoice></term>
<listitem>
<para>Find the minimum value of the graph in a specified range.</para>
<para>Select a graph and the x-values in the new dialog that appears.
Calulates the integral and draws the area between the graph and the x-axis in the
range of the selected x-values in the color of the graph.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Tools</guimenu>
<guimenuitem>Search for Maximum Value...</guimenuitem>
<guimenuitem>Find Minimum...</guimenuitem>
</menuchoice></term>
<listitem>
<para>Find the maximum value of the graph in a specified range.</para>
<para>Find the minimum value of the graph in a specified range.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Tools</guimenu>
<guimenuitem>Calculate Integral</guimenuitem>
<guimenuitem>Find Maximum...</guimenuitem>
</menuchoice></term>
<listitem>
<para>Select a graph and the x-values in the new dialog that appears.
Calulates the integral and draws the area between the graph and the x-axis in the
range of the selected x-values in the color of the graph.</para>
<para>Find the maximum value of the graph in a specified range.</para>
</listitem>
</varlistentry>
......@@ -266,7 +257,17 @@
<variablelist>
<varlistentry>
<term><menuchoice><guimenu>Settings</guimenu>
<guimenuitem>Show/Hide Statusbar</guimenuitem>
<guimenuitem>Show Toolbar</guimenuitem>
</menuchoice></term>
<listitem>
<para><action>Toggle on and off the display of the toolbar.</action>
The default is on.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Settings</guimenu>
<guimenuitem>Show Statusbar</guimenuitem>
</menuchoice></term>
<listitem>
<para><action>Toggle on and off the display of the status bar at the bottom of
......@@ -319,16 +320,6 @@
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenu>Settings</guimenu>
<guimenuitem>Show/Hide Toolbar</guimenuitem>
</menuchoice></term>
<listitem>
<para><action>Toggle on and off the display of the toolbar.</action>
The default is on.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
......@@ -345,7 +336,7 @@
<guimenuitem>Predefined Math Functions...</guimenuitem>
</menuchoice></term>
<listitem>
<para>Opens a window with a list of the predefined function names and constants
<para>Opens this handbook with a list of the predefined function names and constants
that &kmplot; knows.</para>
</listitem>
</varlistentry>
......
......@@ -3,10 +3,9 @@
<para>To access the &kmplot; configuration
dialog, select <menuchoice><guimenu>Settings</guimenu><guimenuitem>Configure
&kmplot;...</guimenuitem></menuchoice>.
A number of settings (<guimenuitem>Constants...</guimenuitem> and
<guimenuitem>Coordinate System...</guimenuitem>) can only be changed
from the <guimenu>Edit</guimenu> menu. </para>
The settings for <guimenuitem>Constants...</guimenuitem> can only be changed
from the <guimenu>Edit</guimenu> menu and the <guimenuitem>Coordinate System...</guimenuitem> only
from the <guimenu>View</guimenu> menu. </para>
<sect1 id="general-config">
<title><guilabel>General</guilabel> Configuration</title>
......@@ -23,7 +22,7 @@
</mediaobject>
</screenshot>
<para>Here you can set global settings which automatic will be saved when you exit &kmplot;. In the first page you can set angle-mode (radians and degrees), zoom in and zoom out factors, and whether to show advanced plot tracing. </para>
<para>Here you can set global settings which automatic will be saved when you exit &kmplot;. you can set angle-mode (radians and degrees), zoom in and zoom out factors, and whether to show advanced plot tracing. </para>
</sect1>
<sect1 id="diagram-config">
......@@ -148,8 +147,8 @@
</screenshot>
<para>
In the <guilabel>Coords</guilabel> tab of the <guilabel>Colors</guilabel>
configuration dialog, you can change the colors of the axes and grid of the
In the <guilabel>Coords</guilabel> section of the <guilabel>Colors</guilabel>
configuration dialog, you can change the colors of the axes, the grid and the background of the
main &kmplot; area.
</para>
......@@ -174,18 +173,24 @@
<variablelist>
<varlistentry>
<term><guilabel>Axis font</guilabel></term>
<term><guilabel>Axis labels</guilabel></term>
<listitem>
<para>The font used for drawing the axis numbers and x/y labels.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><guilabel>Label font</guilabel></term>
<term><guilabel>Diagram label</guilabel></term>
<listitem>
<para>The font used for drawing diagram labels (&eg;, those showing the plot name or extreme points.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><guilabel>Header table</guilabel></term>
<listitem>
<para>The font used for drawing the header when printing a plot.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
......@@ -193,7 +198,7 @@
<sect1 id="coords-config">
<title><guimenuitem>Coordinate System</guimenuitem> Configuration</title>
<para>To open this dialog select <menuchoice><guimenu>View</guimenu><guimenuitem>Coordinate System..</guimenuitem></menuchoice> from the menubar.</para>
<screenshot>
<screeninfo>Screenshot of the Coordinate System dialog</screeninfo>
<mediaobject>
......@@ -207,7 +212,7 @@
</screenshot>
<sect2 id="axes-config">
<title>The <guilabel>Axes</guilabel> Configuration</title>
<title><guilabel>Axes</guilabel> Configuration</title>
<para>
<variablelist>
......@@ -260,6 +265,7 @@
<sect1 id="constants-config">
<title><guimenuitem>Constants</guimenuitem> Configuration</title>
<para>To open this dialog select <menuchoice><guimenu>Edit</guimenu><guimenuitem>Constants..</guimenuitem></menuchoice> from the menubar.</para>
<screenshot>
<screeninfo>Screenshot of the Constants dialog</screeninfo>
......
......@@ -5,12 +5,12 @@
<title>Simple Function Plot</title>
<para>
In the sidebar on the left, there is a button with a drop down menu for creating new plots.
In the sidebar on the left, there is the <guilabel>Create</guilabel> button with a drop down menu for creating new plots.
Click on it, and select <guilabel>Cartesian Plot</guilabel>. The text box for editing the current equation will be focused. Replace the default text with
<screen><userinput>y = x^2</userinput></screen>
and press &Enter;.
This will draw the plot of y = x<superscript>2</superscript> in the coordinate system.
Clicking on the <guilabel>Create New Plot</guilabel> button again, select <guilabel>Cartesian Plot</guilabel>, and this time enter the text
Clicking on the <guilabel>Create</guilabel> button again, select <guilabel>Cartesian Plot</guilabel>, and this time enter the text
<screen><userinput>y = 5sin(x)</userinput></screen>
to get another plot.
</para>
......@@ -32,12 +32,13 @@
<para>Let us make some changes to the function and change the color of
the plot.</para>
<para>The Function Editor lists all the functions that you have plotted.
<para>The <guilabel>Functions</guilabel> sidebar lists all the functions that you have plotted.
If <guilabel>y = x^2</guilabel> isn't already selected, select it.
Here you have access to a lot of options. Let us rename
the function and move the plot 5 units down. Change the function
equation to <screen><userinput>parabola(x) = x^2 - 5</userinput></screen> and hit enter.
To select another color for the plot, click the <guilabel>Appearance</guilabel> button at the bottom of the function editor and select a new color.
To select another color for the plot, click the <guilabel>Color</guilabel> button in the section
<guilabel>Appearance</guilabel> at the bottom of the function sidebar and select a new color.
<note>
<para>All changes can be undone via <menuchoice><guimenu>Edit</guimenu><guimenuitem>Undo</guimenuitem> </menuchoice>.</para>
</note>
......
......@@ -57,7 +57,7 @@
<legalnotice>&FDLNotice;</legalnotice>
<date>2006-02-24</date>
<date>2008-02-09</date>
<releaseinfo>1.2.0</releaseinfo>
<!-- Abstract about this handbook -->
......
......@@ -9,13 +9,9 @@
</imageobject>
</mediaobject>
<para>&kmplot; is part of the &kde; EDU Project: <ulink
url="http://edu.kde.org/">http://edu.kde.org/</ulink></para>
<para>&kmplot; has its own homepage on <ulink
url="http://kmplot.sourceforge.net">SourceForge</ulink>. You can also
find archives of older versions of &kmplot; there, for example, for
&kde; 2.x</para>
<para>&kmplot; itself can be found on the <ulink
url="http://edu.kde.org/kmplot">&kmplot; home page</ulink> and
is part of the &kde;-Edu project</para>
&install.compile.documentation;
......
......@@ -62,7 +62,7 @@
<para>
All the predefined functions and constants that &kmplot; knows can be shown by
selecting <menuchoice><guimenu>Help</guimenu><guimenuitem>Predefined Math Functions</guimenuitem>
</menuchoice>.
</menuchoice>, which displays this page of &kmplot;'s handbook.
</para>
<para>
......@@ -74,7 +74,7 @@
<title>Trigonometric Functions</title>
<para>
By default, the trigonometric functions work in radians. However, this can be changed via <menuchoice><guimenu>Settings</guimenu><guimenuitem>Configure KmPlot</guimenuitem></menuchoice>.
By default, the trigonometric functions work in radians. However, this can be changed via <menuchoice><guimenu>Settings</guimenu><guimenuitem>Configure &kmplot;</guimenuitem></menuchoice>.
</para>
<variablelist>
......@@ -254,7 +254,7 @@
<sect1 id="func-extension">
<title>Extensions</title>
<para>An extension for a function is specified by entering a semicolon,
followed by the extension, after the function definition. The extension can either be written in the Quick Edit box or by using the &DCOP; method Parser addFunction. None of the extensions are available for parametric functions but N and D[a,b] work for polar functions too. For example:
followed by the extension, after the function definition. The extension can either be written in the edit box or by using the DBus method parser addFunction. None of the extensions are available for parametric functions but N and D[a,b] work for polar functions too. For example:
<screen>
<userinput>
f(x)=x^2; A1
......@@ -427,7 +427,7 @@
</para>
<para>
Parametric and polar functions have a default plotting range of 0 to 2&pgr;.
This plotting range can also be changed in the <guilabel>Function Editor</guilabel>.
This plotting range can also be changed in the <guilabel>Functions</guilabel> sidebar.
</para>
</sect1>
......@@ -440,7 +440,7 @@
You can trace a function's values more precisely by clicking onto or next to a graph. The selected function is shown in the status bar in the right column. The crosshair then will be caught and be colored in the same color as the graph. If the graph has the same color as the background color, the crosshair will have the inverted color of the background. When moving the mouse or pressing the keys Left or Right the crosshair will follow the function and you see the current x- and y-value. If the crosshair is close to y-axis, the root-value is shown in the statusbar. You can switch function with the Up and Down keys. A second click anywhere in the window or pressing any non-navigating key will leave this trace mode.
</para>
<para>
For more advanced tracing, open up the Configure KmPlot dialog, and select "Draw tangent and normal when tracing" from the General Settings page. This option will draw the tangent, normal and oscullating circle of the plot currently being traced.
For more advanced tracing, open up the configuration dialog, and select <guilabel>Draw tangent and normal when tracing</guilabel> from the <guilabel>General Settings</guilabel> page. This option will draw the tangent, normal and oscullating circle of the plot currently being traced.
</para>
</sect1>
......
......@@ -8,7 +8,7 @@
<listitem><para>Parametric plots are similar to Cartesian plots. The x and y coordinates can be entered as equations in t, &eg; <quote>x = sin(t)</quote>, <quote>y = cos(t)</quote>, or as functions, &eg; <quote>f_x(s) = sin(s)</quote>, <quote>f_y(s) = cos(s)</quote>.</para></listitem>
<listitem><para>Polar plots are also similar to Cartesian plots. They can be either be entered as an equation in &thgr;, &eg; <quote>r = &thgr;</quote>, or as a function, e.g. <quote>f(x) = x</quote>.</para></listitem>
<listitem><para>For implicit plots, the name of the function is entered separetely from the expression relating the x and y coordinates. If the x and y variables are specified via the function name (by entering &eg;<quote>f(a,b)</quote> as the function name), then these variables will be used. Otherwise, the letters x and y will be used for the variables.</para></listitem>
<listitem><para>Explicit differential plots are differential equations whereby the highest derivatve is given in terms of the lower derivatives. Differentiatation is denoted by a prime ('). In function form, the equation will look like <quote>f''(x) = f' &minus; f</quote>. In equation form, it will look like <quote>y'' = y' &minus; y</quote>. Note that in both cases, the <quote>(x)</quote> part is not added to the lower order differential terms (so you would enter <quote>f'(x) = &minus;f</quote> and not <quote>f'(x) = &minus;f(x)</quote>).</para></listitem>
<listitem><para>Explicit differential plots are differential equations whereby the highest derivatve is given in terms of the lower derivatives. Differentiation is denoted by a prime ('). In function form, the equation will look like <quote>f''(x) = f' &minus; f</quote>. In equation form, it will look like <quote>y'' = y' &minus; y</quote>. Note that in both cases, the <quote>(x)</quote> part is not added to the lower order differential terms (so you would enter <quote>f'(x) = &minus;f</quote> and not <quote>f'(x) = &minus;f(x)</quote>).</para></listitem>
</itemizedlist>
<para>All the equation entry boxes come with a button on the right. Clicking this invokes the advanced <guilabel>Equation Editor</guilabel> dialog, which provides:
......@@ -79,8 +79,8 @@
parameter.</para>
<para>As an example, suppose you want to draw a circle, which has parametric
equations x = sin(t), y = cos(t). After creating a parametric plot, enter the appropriate equations in the x and y boxes, &ie;,
<guilabel>xcircle(t) = </guilabel><userinput>sin(t)</userinput> and
<guilabel>ycircle(t) = </guilabel><userinput>cos(t)</userinput>.
<userinput>f_x(t)=sin(t)</userinput> and
<userinput>f_y(t)=cos(t)</userinput>.
</para>
<para>You can set some further options for the plot in the function editor:
<variablelist>
......@@ -101,21 +101,22 @@
<para>Polar coordinates represent a point by its distance from the origin
(usually called r), and the angle a line from the origin to the point makes
with the x-axis (usually represented by &thgr; the Greek letter theta). To enter
functions in polar coordinates, create a new Polar Plot from the <guilabel>Create New Plot</guilabel> button.
functions in polar coordinates, click the <guilabel>Create</guilabel> button and select <guilabel>Polar Plot</guilabel> from the list.
In the definition box, complete the
function definition, including the name of the theta variable you want
to use, &eg;, to draw the Archimedes' spiral r = &thgr;, enter:
<screen><userinput>r(theta) = theta</userinput></screen>
so that the whole line reads <quote>r(theta) = theta</quote>. Note that
<screen><userinput>r(&thgr;) = &thgr;</userinput></screen>. Note that
you can use any name for the theta variable, so
<quote>r(foo) = foo</quote> will produce exactly the same output.
<quote>r(t) = t</quote> or <quote>f(x) = x</quote> will produce exactly the same output.
</para>
</sect2>
<sect2 id="implicit-functions">
<title>Implicit Functions</title>
<para>An implicit expression relates the x and y coordinates as an equality. To create a circle, for example, create a new Implicit Plot from the <guilabel>Create New Plot</guilabel> button. Then, enter into the equation box (below the function name box) the following:
<para>An implicit expression relates the x and y coordinates as an equality. To create a circle, for example,
click the <guilabel>Create</guilabel> button and select <guilabel>Implicit Plot</guilabel> from the list.
Then, enter into the equation box (below the function name box) the following:
<screen><userinput>x^2 + y^2 = 25</userinput></screen>
</para>
</sect2>
......@@ -127,7 +128,7 @@
y<superscript>(n)</superscript> = F(x,y',y'',...,y<superscript>(n&minus;1)</superscript>), where y<superscript>k</superscript> is the k<superscript>th</superscript> derivative of y(x). &kmplot; can only interpret the derivative order as the number of primes following the function name.
To draw a sinusoidal curve, for example, you would use the differential equation
y'' = &minus; y.
<userinput>y'' = &minus; y</userinput> oder <userinput>f''(x) = −f</userinput>.
</para>
<para>However, a differential equation on its own isn't enough to determine a plot. Each curve in the diagram is generated by a combination of the differential equation and the initial conditions. You can edit the initial conditions by clicking on the <guilabel>Initial Conditions</guilabel> tab when a differential equation is selected. The number of columns provided for editing the initial conditions is dependent on the order of the differential equation.
......@@ -161,8 +162,10 @@
<title>Changing the appearance of functions</title>
<para>To change the appearance of a function's graph on the main plot
window, select the function in the <guilabel>Function Editor</guilabel> sidebar.
You can change the plot's line width, color and many other aspects by clicking on the <guilabel>Appearance</guilabel> button at the bottom.
window, select the function in the <guilabel>Functions</guilabel> sidebar.
You can change the plot's line width, color and many other aspects by clicking on the
<guibutton>Color</guibutton> or <guibutton>Advanced...</guibutton>
button at the bottom of the section <guilabel>Appearance</guilabel>.
</para>
<para>
......@@ -180,6 +183,14 @@
In the menu there are three items available:</para>
<variablelist>
<varlistentry>
<term><menuchoice><guimenuitem>Edit</guimenuitem>
</menuchoice></term>
<listitem>
<para>Selects the function in the <guilabel>Functions</guilabel> sidebar for editing.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenuitem>Hide</guimenuitem>
</menuchoice></term>
......@@ -195,12 +206,18 @@
<para>Removes the function. All its graphs will disappear.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenuitem>Edit</guimenuitem>
<term><menuchoice><guimenuitem>Animate Plot...</guimenuitem>
</menuchoice></term>
<listitem>
<para>Selects the function in the <guilabel>Function Editor</guilabel> for editing.</para>
<para>Displays the <guilabel>Parameter Animator</guilabel> dialog.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenuitem>Calculator</guimenuitem>
</menuchoice></term>
<listitem>
<para>Opens the <guilabel>Calculator</guilabel> dialog.</para>
</listitem>
</varlistentry>
</variablelist>
......@@ -209,19 +226,18 @@
<variablelist>
<varlistentry>
<term><menuchoice><guimenuitem>Get y-Value</guimenuitem>
<term><menuchoice><guimenuitem>Plot Area...</guimenuitem>
</menuchoice></term>
<listitem>
<para>Opens a dialog in which you can find the y-value corresponding to
a specific x-value. The selected graph will be highlighted in the
dialog. Enter an x value in the <guilabel>X:</guilabel> box, and hit Enter.
The corresponding y will be automatically calculated and shown underneath.
<para>Select the minimum and maximum x-values for the graph in the new dialog that appears.
Calulates the integral and draws the area between the graph and the x-axis in the
selected range in the color of the graph.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenuitem>Search for Minimum Value</guimenuitem>
<term><menuchoice><guimenuitem>Find Minimum...</guimenuitem>
</menuchoice></term>
<listitem>
<para>
......@@ -231,29 +247,19 @@
search for a minimum.
</para>
<para>
Note: You can also tell the plot to visually show the extreme points via the plot's <guilabel>Appearance</guilabel> dialog, accessible via the Function Editor.
Note: You can also tell the plot to visually show the extreme points in the <guilabel>Plot Appearance</guilabel> dialog, accessible in the <guilabel>Functions</guilabel> sidebar by clicking on <guibutton>Advanced...</guibutton>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenuitem>Search for Maximum Value</guimenuitem>
<term><menuchoice><guimenuitem>Find Maximum...</guimenuitem>
</menuchoice></term>
<listitem>
<para>This is the same as <guimenuitem>Search for Minimum
Value</guimenuitem> above, but finds the maximum value instead of the minimum value.</para>
<para>This is the same as <guimenuitem>Find Minimum...</guimenuitem> above, but finds the maximum value instead of the minimum value.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><guimenuitem>Calculate Integral</guimenuitem>
</menuchoice></term>
<listitem>
<para>Select the x-values for the graph in the new dialog that appears.
Calulates the integral and draws the area between the graph and the x-axis in the
selected range in the color of the graph.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment