1. 01 May, 2021 1 commit
  2. 10 Apr, 2021 1 commit
  3. 09 Apr, 2021 1 commit
  4. 08 Apr, 2021 1 commit
  5. 07 Feb, 2021 1 commit
  6. 29 Jan, 2021 1 commit
  7. 09 Jan, 2021 2 commits
  8. 08 Jan, 2021 2 commits
  9. 15 Nov, 2020 1 commit
  10. 11 Nov, 2020 1 commit
  11. 23 Oct, 2020 1 commit
  12. 08 Oct, 2020 2 commits
  13. 22 Sep, 2020 1 commit
  14. 09 Sep, 2020 1 commit
  15. 08 Sep, 2020 1 commit
  16. 07 Sep, 2020 2 commits
  17. 06 Sep, 2020 1 commit
  18. 23 Jul, 2020 2 commits
  19. 18 Jun, 2020 2 commits
  20. 17 Jun, 2020 2 commits
  21. 30 May, 2020 1 commit
  22. 23 May, 2020 1 commit
  23. 22 May, 2020 1 commit
  24. 20 May, 2020 1 commit
  25. 17 May, 2020 1 commit
  26. 10 May, 2020 1 commit
  27. 28 Apr, 2020 2 commits
  28. 27 Mar, 2020 1 commit
  29. 21 Jan, 2020 1 commit
  30. 15 Jan, 2020 1 commit
    • Yuri Chornoivan's avatar
      Keep cumulated error negligible for rapidly increasing functions · 2b63a016
      Yuri Chornoivan authored
      Summary:
      The current scheme violates Runge-Kutta condition on error O(h^4) when dy is too high. This leads to visible shifting and discontinuities on the plots of integrals for e^x^2, e^abs(x), etc.
      
      BUG: 341256
      
      Test Plan:
      1. Compile and install KmPlot.
      2. Create the Cartesian plot "f(x) = e^x^2".
      3. Switch to the "Integral" tab and tick the "Show integral" item.
      4. Try to change the scale (Ctrl+mouse wheel). The integral curve should be plotted as expected (no discontinuities, no extra lines on Ox).
      
      f(x)=e^x^2 and its integral
      
      Before the patch:
      {F7764991}
      After the patch:
      {F7764992}
      
      Reviewers: #kde_edu
      
      Subscribers: aacid, cfeck, kde-edu
      
      Tags: #kde_edu
      
      Differential Revision: https://phabricator.kde.org/D24972
      2b63a016
  31. 06 Jan, 2020 1 commit
  32. 28 Nov, 2019 1 commit