qtriangulatingstroker.cpp 22 KB
Newer Older
1 2
/****************************************************************************
**
Jani Heikkinen's avatar
Jani Heikkinen committed
3 4
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
5
**
6
** This file is part of the QtGui module of the Qt Toolkit.
7
**
Jani Heikkinen's avatar
Jani Heikkinen committed
8
** $QT_BEGIN_LICENSE:LGPL$
9 10 11 12
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
Jani Heikkinen's avatar
Jani Heikkinen committed
13
** a written agreement between you and The Qt Company. For licensing terms
Jani Heikkinen's avatar
Jani Heikkinen committed
14 15
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
16
**
17
** GNU Lesser General Public License Usage
18
** Alternatively, this file may be used under the terms of the GNU Lesser
Jani Heikkinen's avatar
Jani Heikkinen committed
19 20 21 22 23
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
24
**
Jani Heikkinen's avatar
Jani Heikkinen committed
25 26 27 28 29 30 31 32 33 34
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qtriangulatingstroker_p.h"
#include <qmath.h>

QT_BEGIN_NAMESPACE

#define CURVE_FLATNESS Q_PI / 8




void QTriangulatingStroker::endCapOrJoinClosed(const qreal *start, const qreal *cur,
                                               bool implicitClose, bool endsAtStart)
{
    if (endsAtStart) {
        join(start + 2);
    } else if (implicitClose) {
        join(start);
        lineTo(start);
        join(start+2);
    } else {
        endCap(cur);
    }
    int count = m_vertices.size();

    // Copy the (x, y) values because QDataBuffer::add(const float& t)
    // may resize the buffer, which will leave t pointing at the
    // previous buffer's memory region if we don't copy first.
    float x = m_vertices.at(count-2);
    float y = m_vertices.at(count-1);
    m_vertices.add(x);
    m_vertices.add(y);
}

73 74 75 76 77 78 79 80
static inline void skipDuplicatePoints(const qreal **pts, const qreal *endPts)
{
    while ((*pts + 2) < endPts && float((*pts)[0]) == float((*pts)[2])
           && float((*pts)[1]) == float((*pts)[3]))
    {
        *pts += 2;
    }
}
81

82
void QTriangulatingStroker::process(const QVectorPath &path, const QPen &pen, const QRectF &, QPainter::RenderHints)
83 84 85 86
{
    const qreal *pts = path.points();
    const QPainterPath::ElementType *types = path.elements();
    int count = path.elementCount();
87
    m_vertices.reset();
88 89 90 91 92 93 94 95 96
    if (count < 2)
        return;

    float realWidth = qpen_widthf(pen);
    if (realWidth == 0)
        realWidth = 1;

    m_width = realWidth / 2;

97
    bool cosmetic = pen.isCosmetic();
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    if (cosmetic) {
        m_width = m_width * m_inv_scale;
    }

    m_join_style = qpen_joinStyle(pen);
    m_cap_style = qpen_capStyle(pen);
    m_miter_limit = pen.miterLimit() * qpen_widthf(pen);

    // The curvyness is based on the notion that I originally wanted
    // roughly one line segment pr 4 pixels. This may seem little, but
    // because we sample at constantly incrementing B(t) E [0<t<1], we
    // will get longer segments where the curvature is small and smaller
    // segments when the curvature is high.
    //
    // To get a rough idea of the length of each curve, I pretend that
    // the curve is a 90 degree arc, whose radius is
    // qMax(curveBounds.width, curveBounds.height). Based on this
    // logic we can estimate the length of the outline edges based on
    // the radius + a pen width and adjusting for scale factors
    // depending on if the pen is cosmetic or not.
    //
    // The curvyness value of PI/14 was based on,
    // arcLength = 2*PI*r/4 = PI*r/2 and splitting length into somewhere
    // between 3 and 8 where 5 seemed to be give pretty good results
    // hence: Q_PI/14. Lower divisors will give more detail at the
    // direct cost of performance.

    // simplfy pens that are thin in device size (2px wide or less)
    if (realWidth < 2.5 && (cosmetic || m_inv_scale == 1)) {
        if (m_cap_style == Qt::RoundCap)
            m_cap_style = Qt::SquareCap;
        if (m_join_style == Qt::RoundJoin)
            m_join_style = Qt::MiterJoin;
        m_curvyness_add = 0.5;
        m_curvyness_mul = CURVE_FLATNESS / m_inv_scale;
        m_roundness = 1;
    } else if (cosmetic) {
        m_curvyness_add = realWidth / 2;
136
        m_curvyness_mul = float(CURVE_FLATNESS);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        m_roundness = qMax<int>(4, realWidth * CURVE_FLATNESS);
    } else {
        m_curvyness_add = m_width;
        m_curvyness_mul = CURVE_FLATNESS / m_inv_scale;
        m_roundness = qMax<int>(4, realWidth * m_curvyness_mul);
    }

    // Over this level of segmentation, there doesn't seem to be any
    // benefit, even for huge penWidth
    if (m_roundness > 24)
        m_roundness = 24;

    m_sin_theta = qFastSin(Q_PI / m_roundness);
    m_cos_theta = qFastCos(Q_PI / m_roundness);

    const qreal *endPts = pts + (count<<1);
Allan Sandfeld Jensen's avatar
Allan Sandfeld Jensen committed
153
    const qreal *startPts = nullptr;
154 155 156 157

    Qt::PenCapStyle cap = m_cap_style;

    if (!types) {
158
        skipDuplicatePoints(&pts, endPts);
159 160 161 162 163
        if ((pts + 2) == endPts)
            return;

        startPts = pts;

164 165
        bool endsAtStart = float(startPts[0]) == float(endPts[-2])
                && float(startPts[1]) == float(endPts[-1]);
166 167 168 169 170 171

        if (endsAtStart || path.hasImplicitClose())
            m_cap_style = Qt::FlatCap;
        moveTo(pts);
        m_cap_style = cap;
        pts += 2;
172
        skipDuplicatePoints(&pts, endPts);
173 174
        lineTo(pts);
        pts += 2;
175
        skipDuplicatePoints(&pts, endPts);
176
        while (pts < endPts) {
177 178
            join(pts);
            lineTo(pts);
179
            pts += 2;
180
            skipDuplicatePoints(&pts, endPts);
181 182 183 184 185
        }
        endCapOrJoinClosed(startPts, pts-2, path.hasImplicitClose(), endsAtStart);

    } else {
        bool endsAtStart = false;
186 187
        QPainterPath::ElementType previousType = QPainterPath::MoveToElement;
        const qreal *previousPts = pts;
188 189 190
        while (pts < endPts) {
            switch (*types) {
            case QPainterPath::MoveToElement: {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                int end = (endPts - pts) / 2;
                int nextMoveElement = 1;
                bool hasValidLineSegments = false;
                while (nextMoveElement < end && types[nextMoveElement] != QPainterPath::MoveToElement) {
                    if (!hasValidLineSegments) {
                        hasValidLineSegments =
                            float(pts[0]) != float(pts[nextMoveElement * 2]) ||
                            float(pts[1]) != float(pts[nextMoveElement * 2 + 1]);
                    }
                    ++nextMoveElement;
                }

                /**
                 * 'LineToElement' may be skipped if it doesn't move the center point
                 * of the line. We should make sure that we don't end up with a lost
                 * 'MoveToElement' in the vertex buffer, not connected to anything. Since
                 * the buffer uses degenerate triangles trick to split the primitives,
                 * this spurious MoveToElement will create artifacts when rendering.
                 */
                if (!hasValidLineSegments) {
                    pts += 2 * nextMoveElement;
                    types += nextMoveElement;
                    continue;
                }

216 217
                if (previousType != QPainterPath::MoveToElement)
                    endCapOrJoinClosed(startPts, previousPts, path.hasImplicitClose(), endsAtStart);
218 219

                startPts = pts;
220 221 222 223
                skipDuplicatePoints(&startPts, endPts); // Skip duplicates to find correct normal.
                if (startPts + 2 >= endPts)
                    return; // Nothing to see here...

224 225
                endsAtStart = float(startPts[0]) == float(pts[nextMoveElement * 2 - 2])
                        && float(startPts[1]) == float(pts[nextMoveElement * 2 - 1]);
226 227 228
                if (endsAtStart || path.hasImplicitClose())
                    m_cap_style = Qt::FlatCap;

229
                moveTo(startPts);
230
                m_cap_style = cap;
231 232
                previousType = QPainterPath::MoveToElement;
                previousPts = pts;
233 234 235 236
                pts+=2;
                ++types;
                break; }
            case QPainterPath::LineToElement:
237 238 239 240 241 242 243
                if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1])) {
                    if (previousType != QPainterPath::MoveToElement)
                        join(pts);
                    lineTo(pts);
                    previousType = QPainterPath::LineToElement;
                    previousPts = pts;
                }
244 245 246 247
                pts+=2;
                ++types;
                break;
            case QPainterPath::CurveToElement:
248 249 250 251
                if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1])
                        || float(pts[0]) != float(pts[2]) || float(pts[1]) != float(pts[3])
                        || float(pts[2]) != float(pts[4]) || float(pts[3]) != float(pts[5]))
                {
Charles Yin's avatar
Charles Yin committed
252 253 254 255
                    if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1])) {
                        if (previousType != QPainterPath::MoveToElement)
                            join(pts);
                    }
256 257 258 259
                    cubicTo(pts);
                    previousType = QPainterPath::CurveToElement;
                    previousPts = pts + 4;
                }
260 261 262 263 264 265 266 267 268
                pts+=6;
                types+=3;
                break;
            default:
                Q_ASSERT(false);
                break;
            }
        }

269 270
        if (previousType != QPainterPath::MoveToElement)
            endCapOrJoinClosed(startPts, previousPts, path.hasImplicitClose(), endsAtStart);
271 272 273 274 275 276 277 278 279 280 281 282 283
    }
}

void QTriangulatingStroker::moveTo(const qreal *pts)
{
    m_cx = pts[0];
    m_cy = pts[1];

    float x2 = pts[2];
    float y2 = pts[3];
    normalVector(m_cx, m_cy, x2, y2, &m_nvx, &m_nvy);


Jarek Kobus's avatar
Jarek Kobus committed
284
    // To achieve jumps we insert zero-area tringles. This is done by
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    // adding two identical points in both the end of previous strip
    // and beginning of next strip
    bool invisibleJump = m_vertices.size();

    switch (m_cap_style) {
    case Qt::FlatCap:
        if (invisibleJump) {
            m_vertices.add(m_cx + m_nvx);
            m_vertices.add(m_cy + m_nvy);
        }
        break;
    case Qt::SquareCap: {
        float sx = m_cx - m_nvy;
        float sy = m_cy + m_nvx;
        if (invisibleJump) {
            m_vertices.add(sx + m_nvx);
            m_vertices.add(sy + m_nvy);
        }
        emitLineSegment(sx, sy, m_nvx, m_nvy);
        break; }
    case Qt::RoundCap: {
        QVarLengthArray<float> points;
        arcPoints(m_cx, m_cy, m_cx + m_nvx, m_cy + m_nvy, m_cx - m_nvx, m_cy - m_nvy, points);
        m_vertices.resize(m_vertices.size() + points.size() + 2 * int(invisibleJump));
        int count = m_vertices.size();
        int front = 0;
        int end = points.size() / 2;
        while (front != end) {
            m_vertices.at(--count) = points[2 * end - 1];
            m_vertices.at(--count) = points[2 * end - 2];
            --end;
            if (front == end)
                break;
            m_vertices.at(--count) = points[2 * front + 1];
            m_vertices.at(--count) = points[2 * front + 0];
            ++front;
        }

        if (invisibleJump) {
            m_vertices.at(count - 1) = m_vertices.at(count + 1);
            m_vertices.at(count - 2) = m_vertices.at(count + 0);
        }
        break; }
    default: break; // ssssh gcc...
    }
    emitLineSegment(m_cx, m_cy, m_nvx, m_nvy);
}

void QTriangulatingStroker::cubicTo(const qreal *pts)
{
    const QPointF *p = (const QPointF *) pts;
    QBezier bezier = QBezier::fromPoints(*(p - 1), p[0], p[1], p[2]);

    QRectF bounds = bezier.bounds();
    float rad = qMax(bounds.width(), bounds.height());
    int threshold = qMin<float>(64, (rad + m_curvyness_add) * m_curvyness_mul);
    if (threshold < 4)
        threshold = 4;
    qreal threshold_minus_1 = threshold - 1;
344
    float vx = 0, vy = 0;
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

    float cx = m_cx, cy = m_cy;
    float x, y;

    for (int i=1; i<threshold; ++i) {
        qreal t = qreal(i) / threshold_minus_1;
        QPointF p = bezier.pointAt(t);
        x = p.x();
        y = p.y();

        normalVector(cx, cy, x, y, &vx, &vy);

        emitLineSegment(x, y, vx, vy);

        cx = x;
        cy = y;
    }

    m_cx = cx;
    m_cy = cy;

    m_nvx = vx;
    m_nvy = vy;
}

void QTriangulatingStroker::join(const qreal *pts)
{
    // Creates a join to the next segment (m_cx, m_cy) -> (pts[0], pts[1])
    normalVector(m_cx, m_cy, pts[0], pts[1], &m_nvx, &m_nvy);

    switch (m_join_style) {
    case Qt::BevelJoin:
        break;
    case Qt::SvgMiterJoin:
    case Qt::MiterJoin: {
        // Find out on which side the join should be.
        int count = m_vertices.size();
        float prevNvx = m_vertices.at(count - 2) - m_cx;
        float prevNvy = m_vertices.at(count - 1) - m_cy;
        float xprod = prevNvx * m_nvy - prevNvy * m_nvx;
        float px, py, qx, qy;

        // If the segments are parallel, use bevel join.
        if (qFuzzyIsNull(xprod))
            break;

        // Find the corners of the previous and next segment to join.
        if (xprod < 0) {
            px = m_vertices.at(count - 2);
            py = m_vertices.at(count - 1);
            qx = m_cx - m_nvx;
            qy = m_cy - m_nvy;
        } else {
            px = m_vertices.at(count - 4);
            py = m_vertices.at(count - 3);
            qx = m_cx + m_nvx;
            qy = m_cy + m_nvy;
        }

        // Find intersection point.
        float pu = px * prevNvx + py * prevNvy;
        float qv = qx * m_nvx + qy * m_nvy;
        float ix = (m_nvy * pu - prevNvy * qv) / xprod;
        float iy = (prevNvx * qv - m_nvx * pu) / xprod;

        // Check that the distance to the intersection point is less than the miter limit.
        if ((ix - px) * (ix - px) + (iy - py) * (iy - py) <= m_miter_limit * m_miter_limit) {
            m_vertices.add(ix);
            m_vertices.add(iy);
            m_vertices.add(ix);
            m_vertices.add(iy);
        }
        // else
        // Do a plain bevel join if the miter limit is exceeded or if
        // the lines are parallel. This is not what the raster
        // engine's stroker does, but it is both faster and similar to
        // what some other graphics API's do.

        break; }
    case Qt::RoundJoin: {
        QVarLengthArray<float> points;
        int count = m_vertices.size();
        float prevNvx = m_vertices.at(count - 2) - m_cx;
        float prevNvy = m_vertices.at(count - 1) - m_cy;
        if (m_nvx * prevNvy - m_nvy * prevNvx < 0) {
            arcPoints(0, 0, m_nvx, m_nvy, -prevNvx, -prevNvy, points);
            for (int i = points.size() / 2; i > 0; --i)
                emitLineSegment(m_cx, m_cy, points[2 * i - 2], points[2 * i - 1]);
        } else {
            arcPoints(0, 0, -prevNvx, -prevNvy, m_nvx, m_nvy, points);
            for (int i = 0; i < points.size() / 2; ++i)
                emitLineSegment(m_cx, m_cy, points[2 * i + 0], points[2 * i + 1]);
        }
        break; }
    default: break; // gcc warn--
    }

    emitLineSegment(m_cx, m_cy, m_nvx, m_nvy);
}

void QTriangulatingStroker::endCap(const qreal *)
{
    switch (m_cap_style) {
    case Qt::FlatCap:
        break;
    case Qt::SquareCap:
        emitLineSegment(m_cx + m_nvy, m_cy - m_nvx, m_nvx, m_nvy);
        break;
    case Qt::RoundCap: {
        QVarLengthArray<float> points;
        int count = m_vertices.size();
        arcPoints(m_cx, m_cy, m_vertices.at(count - 2), m_vertices.at(count - 1), m_vertices.at(count - 4), m_vertices.at(count - 3), points);
        int front = 0;
        int end = points.size() / 2;
        while (front != end) {
            m_vertices.add(points[2 * end - 2]);
            m_vertices.add(points[2 * end - 1]);
            --end;
            if (front == end)
                break;
            m_vertices.add(points[2 * front + 0]);
            m_vertices.add(points[2 * front + 1]);
            ++front;
        }
        break; }
    default: break; // to shut gcc up...
    }
}

void QTriangulatingStroker::arcPoints(float cx, float cy, float fromX, float fromY, float toX, float toY, QVarLengthArray<float> &points)
{
    float dx1 = fromX - cx;
    float dy1 = fromY - cy;
    float dx2 = toX - cx;
    float dy2 = toY - cy;

    // while more than 180 degrees left:
    while (dx1 * dy2 - dx2 * dy1 < 0) {
        float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta;
        float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta;
        dx1 = tmpx;
        dy1 = tmpy;
        points.append(cx + dx1);
        points.append(cy + dy1);
    }

    // while more than 90 degrees left:
    while (dx1 * dx2 + dy1 * dy2 < 0) {
        float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta;
        float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta;
        dx1 = tmpx;
        dy1 = tmpy;
        points.append(cx + dx1);
        points.append(cy + dy1);
    }

    // while more than 0 degrees left:
    while (dx1 * dy2 - dx2 * dy1 > 0) {
        float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta;
        float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta;
        dx1 = tmpx;
        dy1 = tmpy;
        points.append(cx + dx1);
        points.append(cy + dy1);
    }

    // remove last point which was rotated beyond [toX, toY].
    if (!points.isEmpty())
        points.resize(points.size() - 2);
}

static void qdashprocessor_moveTo(qreal x, qreal y, void *data)
{
    ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::MoveToElement, x, y);
}

static void qdashprocessor_lineTo(qreal x, qreal y, void *data)
{
    ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::LineToElement, x, y);
}

static void qdashprocessor_cubicTo(qreal, qreal, qreal, qreal, qreal, qreal, void *)
{
    Q_ASSERT(0); // The dasher should not produce curves...
}

QDashedStrokeProcessor::QDashedStrokeProcessor()
    : m_points(0), m_types(0),
Allan Sandfeld Jensen's avatar
Allan Sandfeld Jensen committed
533
      m_dash_stroker(nullptr), m_inv_scale(1)
534 535 536 537 538 539
{
    m_dash_stroker.setMoveToHook(qdashprocessor_moveTo);
    m_dash_stroker.setLineToHook(qdashprocessor_lineTo);
    m_dash_stroker.setCubicToHook(qdashprocessor_cubicTo);
}

540
void QDashedStrokeProcessor::process(const QVectorPath &path, const QPen &pen, const QRectF &clip, QPainter::RenderHints)
541 542 543 544 545 546
{

    const qreal *pts = path.points();
    const QPainterPath::ElementType *types = path.elements();
    int count = path.elementCount();

547
    bool cosmetic = pen.isCosmetic();
548
    bool implicitClose = path.hasImplicitClose();
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

    m_points.reset();
    m_types.reset();
    m_points.reserve(path.elementCount());
    m_types.reserve(path.elementCount());

    qreal width = qpen_widthf(pen);
    if (width == 0)
        width = 1;

    m_dash_stroker.setDashPattern(pen.dashPattern());
    m_dash_stroker.setStrokeWidth(cosmetic ? width * m_inv_scale : width);
    m_dash_stroker.setDashOffset(pen.dashOffset());
    m_dash_stroker.setMiterLimit(pen.miterLimit());
    m_dash_stroker.setClipRect(clip);

Friedemann Kleint's avatar
Friedemann Kleint committed
565
    float curvynessAdd, curvynessMul;
566

567
    // simplify pens that are thin in device size (2px wide or less)
568 569 570 571 572
    if (width < 2.5 && (cosmetic || m_inv_scale == 1)) {
        curvynessAdd = 0.5;
        curvynessMul = CURVE_FLATNESS / m_inv_scale;
    } else if (cosmetic) {
        curvynessAdd= width / 2;
573
        curvynessMul= float(CURVE_FLATNESS);
574 575 576 577 578 579 580 581
    } else {
        curvynessAdd = width * m_inv_scale;
        curvynessMul = CURVE_FLATNESS / m_inv_scale;
    }

    if (count < 2)
        return;

582 583 584 585 586
    bool needsClose = false;
    if (implicitClose) {
        if (pts[0] != pts[count * 2 - 2] || pts[1] != pts[count * 2 - 1])
            needsClose = true;
    }
587

588 589
    const qreal *firstPts = pts;
    const qreal *endPts = pts + (count<<1);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    m_dash_stroker.begin(this);

    if (!types) {
        m_dash_stroker.moveTo(pts[0], pts[1]);
        pts += 2;
        while (pts < endPts) {
            m_dash_stroker.lineTo(pts[0], pts[1]);
            pts += 2;
        }
    } else {
        while (pts < endPts) {
            switch (*types) {
            case QPainterPath::MoveToElement:
                m_dash_stroker.moveTo(pts[0], pts[1]);
                pts += 2;
                ++types;
                break;
            case QPainterPath::LineToElement:
                m_dash_stroker.lineTo(pts[0], pts[1]);
                pts += 2;
                ++types;
                break;
            case QPainterPath::CurveToElement: {
                QBezier b = QBezier::fromPoints(*(((const QPointF *) pts) - 1),
                                                *(((const QPointF *) pts)),
                                                *(((const QPointF *) pts) + 1),
                                                *(((const QPointF *) pts) + 2));
                QRectF bounds = b.bounds();
                float rad = qMax(bounds.width(), bounds.height());
                int threshold = qMin<float>(64, (rad + curvynessAdd) * curvynessMul);
                if (threshold < 4)
                    threshold = 4;

                qreal threshold_minus_1 = threshold - 1;
                for (int i=0; i<threshold; ++i) {
                    QPointF pt = b.pointAt(i / threshold_minus_1);
                    m_dash_stroker.lineTo(pt.x(), pt.y());
                }
                pts += 6;
                types += 3;
                break; }
            default: break;
            }
        }
    }
635 636
    if (needsClose)
        m_dash_stroker.lineTo(firstPts[0], firstPts[1]);
637 638 639 640 641

    m_dash_stroker.end();
}

QT_END_NAMESPACE